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Abstract
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an equilibrium framework to draw implications for the effectiveness of sustainable investing: (i) price-
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1 INTRODUCTION

Sustainable investing seeks to direct capital towards companies with positive environmental and social im-

pact and away from those with negative impact, thereby affecting their cost of capital. Interest in sustain-

able investing has grown significantly in the last decade with ESG (Environmental, Social, and Governance)

assets predicted to reach over $53 trillion by 2025 (Bloomberg, 2021). This trend has been particularly pro-

nounced in equity markets, resulting in a plethora of academic research attempting to understand equity

investors’ demand for sustainability (Coqueret, 2021).

While existing research shows that the demand for sustainable assets in financial markets has strength-

ened enough in aggregate to affect equity valuations (van der Beck, 2021; Pástor et al., 2022), this trend

alone masks the underlying heterogeneity in demand for sustainability across investors. Often-cited threats

to sustainable investing include concerns about price-elastic investors picking up “brown” stocks divested

by sustainable investors and political backlash against ESG such as Florida’s banning of ESG considera-

tions from state pension investments (Bloomberg, 2022).1 Not every investor shares the enthusiasm for

sustainability.

Taking this heterogeneity into account is of first-order importance for the outstanding questions related

to sustainable investing. Can investors meaningfully affect firms’ cost of capital even if the hedge fund

sector collectively invests in divested brown firms? If states or countries ban ESG considerations, how

will the cross-section of stock valuations be affected? Do firms improve environmental performance in

response to price pressure from sustainable shareholders?2 Answers to these questions cannot be deduced

from valuation patterns alone as they depend on the joint distribution of price elasticities, strength of

demand for sustainability, and the specific dimensions of sustainability that investors care about.

In this paper, we investigate the heterogeneity in investor demand for sustainability and study its im-

plications for firm decisions and asset prices. Not only do we estimate each investor’s demand separately,

but we also incorporate various dimensions of sustainability that a particular investor may care about. As

a result, we go beyond a simple dichotomy of “green” vs. “brown” investors and provide a more nu-

anced classification of who green investors are. We then apply an equilibrium asset pricing framework to

derive model-based empirical quantities and to consider counterfactual scenarios that allow us to answer

policy-relevant questions.3

1Popular media outlets often report hedge funds and private equity firms purchasing stakes in polluting firms that are be-
ing divested by climate-conscious institutions (Fletcher and Brower, 2021; Gilbert, 2021). The usual story is that institutional
investors who face fewer constraints or less pressure from their clients happily scoop up divested shares, thereby attenuating the
effectiveness of sustainable investment mandates.

2In our framework, the first question will be the concern that price-elastic investors absorbing the excess supply (demand) of
brown (green) assets. A perfectly price-elastic market will completely “undo” the valuation effect of sustainable investing, which
also implies zero impact on the cost of capital of green and brown firms. The second question will be a counterfactual scenario in
which we “turn off” the demand coefficient on sustainability for a subset of investors.

3Many existing equilibrium asset-pricing models on sustainable investing are based on one or two sources of investor hetero-
geneity. Pástor et al. (2021), Pedersen et al. (2021), and Goldstein et al. (2022) all present models that feature investors with different
preferences or beliefs about ESG stocks. Zerbib (2022) offers a model that has investors with both different ESG preferences and
investment universes. Our paper builds on these works by analyzing multiple sources of investor heterogeneity.
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Our findings reveal both the merits and limitations of sustainable equity investing. On one hand,

we show that the demand for firm sustainability has been rising for both active and passive investors

and is not driven by potential correlation of sustainability with other firm characteristics. In addition,

we find that investors not only demand firms with high third-party sustainability ratings but also those

with low emissions intensity. On the other hand, they do not demand firms that innovate in sustainable

technologies, which are the firms that could benefit the most from cost of capital reductions. In addition,

investor pressure generated by these demand patterns seem to translate into only limited improvements

in firm sustainability.

As the first step in understanding the investor demand for sustainability, we start by measuring three

key dimensions of firm-level sustainability: emissions intensity, environment score, and green patents.

To measure emissions intensity, we gather data on Scope 1 greenhouse gas emissions from S&P Trucost

, which are emissions that come directly from sources controlled or owned by the firm. Next, we create

environment scores using data from the MSCI ESG ratings database. Since these scores are correlated

with greenhouse gas emissions among firms, we extract the component of the score that is unrelated to

emissions. Finally, we use data from PatentsView to create company-level production of green patents.

By adopting this comprehensive approach, we obviate the need to assume a specific perspective on how

investors perceive sustainability, thus improving upon existing studies that typically examine only one

dimension.

Using the firm sustainability measures, we present initial evidence that the three aspects of sustainabil-

ity are valued differently by investors. Our cross-sectional valuation regressions from 2013 to 2021 reveal

that third-party environment scores have been consistently valued by investors over this period, and emis-

sions intensity has been negatively valued only after 2018. In particular, during the post-2018 period, a

one standard deviation lower emission intensity is associated with 6.45% lower market-to-book ratio, and

one standard deviation higher environmental score is associated with 11.5% higher market-to-book ratio.

On the other hand, the production of green patents is not valued by investors. These results suggest that

different aspects of sustainability may be valued heterogeneously in the equity market.

To gain a deeper understanding of this heterogeneity, we construct an asset demand system that incor-

porates our sustainability measures into investor demand curves, along with traditional stock character-

istics that are known to influence investor demand. We model and estimate investor demand using the

approach in Koijen and Yogo (2019), which provides a tractable model of investor demand that allows for

rich heterogeneity. We also illustrate that sustainability can enter investor demand in two ways: when

sustainability is informative about expected returns and when the investor faces a minimum sustainability

constraint.

We document substantial heterogeneity in demand for sustainability across investors. On average, in-

vestors have a positive preference for higher environment score and emissions intensity but not for green

patents. Comparing across investors, we find that active investors—those who deviate more from the

market benchmark weights—exhibit not only higher price elasticities but also stronger demand for sustain-
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ability. This finding suggests that active investors are not counteracting sustainable investing as commonly

assumed, but rather playing a crucial role along with passive investors in shaping the valuation patterns

in equity markets.

The trend of increasing overall demand for low-emissions firms can come from two sources: (i) a

within-investor preference shift towards low-emission stocks, or (ii) a shift of AUM away from “brown”

investors who prefer high-emission stocks, towards “green” investors who prefer low-emission stocks. By

examining trends based on estimated coefficients, we provide evidence that this trend is mainly driven by

within-investors shifts in preferences rather than shifts in capital across investors. We also confirm this

evidence through counterfactuals based on the estimated demand system.

Having documented the heterogeneity across investors, we then examine the implications of these

patterns in investor demand. We first consider implications for firm decisions. We use the estimated

demand curves to quantify investor pressure for sustainability, which captures the price pressure a firm

receives, through investor demand, to become more sustainable. Our closed-form expression shows that

the pressure is determined by the average demand for sustainability of the firm’s investors, adjusted for

their collective price elasticity. Our estimated demand parameters also suggest that, on average, firms have

faced increased pressure to improve sustainability. However, we find that higher investor pressure today

only weakly predicts future improvements in firm sustainability.

We next consider the asset pricing implications of two counterfactual scenarios that reflect important

developments in sustainable investing. In the first, we study the impact of introducing ESG-agnostic man-

dates by analyzing the valuation patterns when certain investors “shut off” their demand for sustainability.

This exercise shows that active and passive investors contribute roughly equally to the valuation patterns,

challenging the often held belief that active investors may “undo” sustainable investing.4

In the second scenario, we examine the effect of introducing hypothetical ESG ratings. Specifically, we

consider how leading sustainability score providers could adjust their methodology to incorporate firm-

level green productivity. We find that such a change leads to a meaningful increase in the valuation of

top green patent producers while maintaining the valuation gap between low- and high-emission stocks.

These results suggest that the proposed change in rating methodology can be implemented without com-

promising the objective of sustainable investing.

RELATED LITERATURE AND CONTRIBUTION

Our paper contributes to four main strands of literature in sustainable equity investing and asset pricing.

First, our paper contributes to the literature on the asset-pricing implications of sustainable investing, to

which Giglio et al. (2021) and Coqueret (2021) provide a comprehensive review. Our focus is on the equity

market, and existing papers in this literature study the return gap between green and brown stocks both

4In the language of demand system asset pricing, this would be the concern that price-elastic investors absorbing the ex-
cess supply (demand) of brown (green) assets. A perfectly price-elastic market will completely “undo” the valuation effect of
sustainable investing, which also implies zero impact on the cost of capital of green and brown firms.
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through the lens of a theoretical framework (Heinkel et al., 2001; Pástor et al., 2021; Pedersen et al., 2021

Zerbib, 2022) and through empirical analyses based on realized returns (Görgen et al., 2020; Bolton and

Kacperczyk, 2021; Derrien et al., 2021; ; Glossner, 2021; Hsu et al., 2022; Pástor et al., 2022).5 To this

literature, we provide two contributions. First, we provide new evidence on how three different measures

of environmental performance are priced in the cross-section of stock valuations and how these pricing

relationships have evolved over time. Our findings complements Choi et al. (2022) who find that carbon

emissions intensity is negatively correlated with stock valuation in 26 countries as well as Cohen et al.

(2020) who show that ESG investors lack incentive to invest in firms with high green innovation capacity.

The coverage of our results on all three green characteristics also adds to the discussion regarding “ESG

confusion” in Berg et al. (2022) that highlights the low correlation between different sustainable metrics.

Our second contribution is to illustrate how different changes in sustainable demand could affect these

valuation relationships via counterfactuals, which add to the analysis of green-brown expected returns in

Berk and van Binsbergen (2021) and the analysis of realized returns in van der Beck (2021).

Second, our paper contributes primarily to the growing literature that directly studies investor demand

for sustainable assets. While some papers use the survey instruments (Krueger et al., 2020; Gormsen et al.,

2023), most papers analyze their portfolio choice decisions directly. For institutional investors, Gibson et al.

(2020) computes a portfolio-level sustainability measure for all 13F investors and shows that institutions

with high portfolio sustainability earned higher returns after 2010. Others have focused on subsets of in-

stitutional investors by studying inflows into sustainable mutual funds (Hartzmark and Sussman, 2019;

van der Beck (2021); Baker et al. (2022)) or the greenwashing behaviors of hedge funds and active mutual

funds (Liang et al., 2021; Kim and Yoon, 2022). We contribute to this literature by providing a comprehen-

sive estimate of sustainable demand for institutional investors in the U.S. stock market. The estimates of

investor demand thus shed new light on both the cross-sectional differences in sustainable demand across

investors as well as the time-series evolution of sustainable demand for each characteristic. While our pa-

per shares the same focus on asset demand as in Koijen et al. (2022), we provide more richness by analyzing

a comprehensive set of sustainability metrics, studying more counterfactual scenarios, and providing real

impact analysis through our model-based investor pressure measure.

Third, our paper contributes to the literature on the real impact of sustainable equity investing. Theo-

retically, Broccardo et al. (2022) shows in a model of firm incentives that divestment (“exit”) tends to be less

effective than engagement (“voice”), and Edmans et al. (2022) highlights the limits of blank exclusion of

such full divestment strategies. Berk and van Binsbergen (2021) also argues based on a CAPM calibration

that even a large substitution from brown to green stocks would only marginally increase the cost of cap-

ital for brown firms. The empirical evidence is also generally mixed regarding the impact of sustainable

investing on real firm decisions (Heath et al., 2021, Gantchev et al., 2022; Hartzmark and Shue, 2023). We

contribute to this literature by deriving a new measure of a firm’s incentive to improve its environmen-

5There also exists work with respect to demand for other types of assets such as bonds (Flammer, 2021) and options (Ilhan
et al., 2021).
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tal performance and showing that while firms on average have positive incentive from investor pressure

to reduce carbon emission, the correlation between a firm’s investor pressure and future environmental

performance is only weakly positive.

Finally, our paper contributes to the burgeoning literature that studies questions in asset pricing based

on estimation of asset demand in markets ranging from equity, corporate bonds, and country-level assets

(Koijen and Yogo (2019), Koijen et al. (2022), Koijen and Yogo (2020), Bretscher et al. (2020), Jiang et al.

(2022)). In particular, our paper relates to studies that apply demand estimation to specific asset-pricing

questions, including Gabaix et al. (2022) on the asset demand of U.S. households, Huebner (2022) on the

source of equity momentum, Jansen (2021) on long term bond demand, and van der Beck and Jaunin

(2021) on retail investor demand.6 Our paper contributes to the latter part of this literature by providing

a structural analysis of sustainable equity investing through our emphasis on asset demand of individual

investors.

ROADMAP

We first describe the data as well as stylized facts from valuation regressions (Section 2). We then set up

the asset demand system that includes sustainability characteristics in investor demand curves (Section

3), which we estimate and highlight key patterns (Section 4). With the estimated demand system, we

explore implications for both firm decisions and asset prices. In Section 5, we quantify investor pressure for

sustainability and examine whether higher pressure today leads to greater future sustainability. In Section

6, we consider two counterfactual scenarios related to investor preferences and measures of sustainability

to examine how valuation patterns changes.

2 DATA AND STYLIZED FACTS

We measure firm sustainability in three ways, an approach that improves upon the previous literature

that usually focuses on one of the three dimensions (Section 2.1). We then show that each sustainability

characteristic is priced differently in the cross-section of stocks, indicating that these characteristics may

enter investor demand curves in different ways (Section 2.2).

2.1 DATA

We construct three measures that capture different dimensions of firm-level sustainability: (i) emissions

intensity using data from S&P Trucost, (ii) environment score using data from MSCI, and (iii) green patents

6Another strand of the literature focuses on asset demand elasticity: Gabaix and Koijen (2021) estimates low “macro elasticity”
of equity demand and proposes the inelastic market hypothesis, Davis et al. (2022) proposes an explanation of inelastic demand
based on a model of information acquisition, and Haddad et al. (2021) estimates moderate strategic substitution in the price
elasticity of investors.
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using data from PatentsView. We later combine this data with detailed holdings of institutional investors

from FactSet as well as stock characteristics and firm-level variables from CRSP and Compustat.

2.1.1 MEASURING FIRM SUSTAINABILITY

EMISSIONS INTENSITY We use firm-level Scope 1 greenhouse gas emissions from S&P Trucost. We choose

carbon emission as our primary measure because it is one of the most important objectives for sustainable

investing and also the most quantifiable. We also focus on Scope 1 emissions, which are the emissions that

emanate directly from sources controlled or owned by the firm. For our measure, we use the logarithm of

Scope 1 emissions intensity, which is defined as a company’s annual Scope 1 emissions divided by annual

revenue7. We henceforth refer to this measure as emissions intensity.

ENVIRONMENT SCORE We obtain firm-specific measures of environmental performance from MSCI ESG

Ratings database, which succeeds the MSCI KLD database used in previous studies related to ESG invest-

ing. We choose MSCI ESG ratings over other ESG rating datasets with a similar motivation as in Pástor

et al. (2022): MSCI covers more firms than other raters, exhibits the least noise (Berg et al., 2019), and is

based on a comprehensive set of corporate documents, government data, and news media.

Following Pástor et al. (2022), we use a combination of the Environment Pillar Score and Environment

Pillar Weight from MSCI to measure sustainability for asset n at time t. Specifically, let Et (n) be the asset

n’s most recent Environment Pillar Score before month t, looking back no more than 12 months, and let

wE
t (n) be the most recent Environment Pillar Weight before month t, looking back no more than 12 months.

We define gt (n) as the following, which we call the raw environment score:

gt (n) =
− (10 − Et (n))wE

t (n)
100

The product is a combination of how far the asset’s rating is from a perfect score (10 − Et (n)) and the

relative importance of environmental issues for the firm
(
wE

t (n)
)
. Due to the minus sign, gt (n) is always

negative and a value close to zero implies higher level of sustainability. Appendix A.1 illustrates the impor-

tance of adjusting MSCI Environmental Pillar Scores by the Environmental Pillar Weights by comparing

the scores between oil & gas and banking stocks. Appendix B.2 shows that our main results are robust

to two alternative definitions of environmental score, based on different transformations of environmental

pillar scores and weights.

The quarterly average cross-sectional correlation between gt (n) and log Scope 1 emissions intensity

is -0.58, which suggest that emission is an important part in MSCI’s environmental ratings. In order to

improve precision and interpretability of our analysis, we regress environmental score on log emissions

intensity in each quarter and use this residual in all cross-sectional analyses. This residual thus captures

7Fewer than 0.1% of all firm-year observations in the Trucost data have zero Scope 1 emission. We add the minimum positive
level of Scope 1 emissions intensity to the actual values before taking the logarithm.

7



the component of environmental score orthogonal to current level of carbon emission, and we henceforth

refer to this residual as the environment score.

GREEN PATENTS We construct firm-specific measures of green technology innovation based on data of

granted U.S. patents from PatentsView. We follow the method developed by Haščič and Migotto (2015)

and used in Cohen et al. (2020) to identify “green patents” related to technologies for reducing emission,

mitigating pollution, or improving environmental performance in general. We use the firm identifier links

provided by Autor et al. (2020) and the WRDS Patents database to merge PatentsView data with our stock

universe.

For cross-sectional analyses, we take the number of green patents that each firm develops in the past

five years, and scale the number of patents by the firm’s total asset. We henceforth refer to this measure as

green patents and define non-green patents analogously using the number of non-green patents8. Appendix

A.2 provides further details on processing the PatentsView data.

2.1.2 PORTFOLIO HOLDINGS, ASSET PRICES, AND CHARACTERISTICS

We use quarterly institutional portfolio holdings of U.S. stocks from the FactSet database, which sources its

data primarily from Securities and Exchange Commission Form 13-F filings. All institutional investment

managers with more than $100 million of asset under management must file the form every quarter. The

data comes at the investment manager level rather than individual fund level (e.g. Vanguard files its

aggregated holdings as one institution) and reports only long positions. We use the data from 2013Q1

to 2021Q3 and merge the data with our quarterly stock universe from CRSP and Compustat via CUSIP.

Appendix A.3 provides additional details.

2.1.3 SUMMARY STATISTICS

Table 1 provides summary statistics of investor and stock characteristics. Panel (a) first provides the distri-

bution of stock characteristics. In an average quarter, 10.1% of stocks by market cap does not have environ-

mental score data, and 3.9% of stocks by market cap does not have emissions data. For these observations

with missing data, we impute the environmental scores or emission intensities based on industry-quarter

averages using Fama-French 12-industry classifications. Among observations with non-missing annual

emissions intensity, the median and mean are 13.6 and 189.7 tons per million dollars of revenue. In an

average quarter, 64.8% of stocks (constituting 67.3% of total market cap) have at least one non-green patent

granted in the previous 5 years, and 33.0% of stocks (constituting 29.6% of total market cap) have at least

one green patent granted in the previous 5 years. In panel (b), we summarize the investors by type. Insti-

tutional investors constitute 69.3% of total AUM in an average quarter and the top 25 largest investment

8The correlation between the two measures is 0.54, which highlights the importance of including non-green patents as a
control variable that captures a firm’s overall innovation capacity. The correlations between all other stock characteristics are
below 0.1.
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advisors constitute 30.7% of the total AUM. Hedge funds have highest average portfolio active share at

0.711. In Appendix B.1, we also summarize the relationship between the three measures of firm sustain-

ability and show that the environment score has real information content with respect to future emissions

and green innovation.

2.2 STYLIZED FACTS: EVIDENCE FROM VALUATION REGRESSIONS

Next we provide results from cross-sectional valuation regressions during the period from 2013 to 2021. We

find that environment score is consistently positively priced; the emissions intensity is negatively priced

only after 2018; and green patents is not priced. These results imply that different aspects of sustainability

may be demanded differently by investors, thereby motivating a more structural analysis via the asset

demand system in subsequent sections.

Specifically, we estimate the following valuation regressions:

mbt (n) = at + λ′xt (n) + ϵt (n) (1)

where the dependent variable mbt (n) is the market-to-book ratio of firm n at time t and xt (n) is a vector

of time-varying firm characteristics that includes both sustainability and non-sustainability characteristics

that are cross-sectionally standardized in each quarter.

Table 2 summarizes the coefficients from the regressions. Column (1) shows the results based on the

entire sample. First, among the three green characteristics, only the environmental score is significantly

reflected in the cross-section of valuations: a one standard deviation higher environmental score is asso-

ciated with 10.7% higher market-to-book ratio, with t-statistic of 8.2 based on clustered standard errors.

Second, emissions intensity is negatively related to valuation, but the coefficient is not statistically signif-

icant over the entire sample. Finally, although a firm’s overall innovation capacity is positively reflected

in valuations (strongly positive coefficient for the non-green patents), green patents are not reflected in the

cross-sectional of valuations.

Columns (2) - (3) of Table 2 provides subsample analyses based on data from 2013-2017 and 2018-

2021 separately. First, the results for environmental score are similar over the two sample periods, i.e.,

the environmental score is consistently valued in the cross-section. Second, the coefficient for emissions

intensity is not significant for the 2013-2017 subsample but is strongly negative and significant for the 2018-

2021 subsample. In the 2018-2021 sample, one standard deviation higher emissions intensity is associated

with 6.45% lower market-to-book ratio in the cross-section. This difference across two sample periods

suggests a significant shift in investor demand that prefers low-emission over high-emission stocks in the

recent years.

Figure 1 plots the coefficients from estimating Equation (1) cross-sectionally for each quarter. The time

series of coefficients confirm both a consistent valuation gap for environmental score and a strengthening

valuation gap against emissions intensity. In fact, the valuation regression coefficient for emissions inten-
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sity was positive and statistically significant from 2013 to 2014 and then turned negative and statistically

significant since 2018.

Overall, we find that the three sustainability characteristics are priced differently in the cross-section

of stocks and also for different time periods. These results suggest that characteristics may enter investor

demand curves in different ways, which we explore next.

3 THE ASSET DEMAND SYSTEM WITH SUSTAINABILITY

We set up the asset demand system that includes sustainability characteristics in investor demand curves.

We allow heterogeneity across both investors and time, which allows us to examine how each of the sus-

tainability measures are demanded differently across investors.

3.1 SETUP AND NOTATION

We adapt the setting and notation used in Koijen and Yogo (2019), which we partly introduce here while

omitting some details to avoid repeating the entire setup. A key addition is the introduction of sustainabil-

ity characteristics. Investors may care about sustainability either for pecuniary or non-pecuniary reasons,

and evidence can be found for both (e.g. Barber et al., 2021 and Bansal et al., 2018). While we remain agnos-

tic on what the more prominent motivation is, we show that sustainability should enter the characteristics-

based demand in at least two cases: sustainability is informative about expected returns or investors are

constrained to hold a sustainable portfolio (e.g. due to investment mandates or pressure from clients).

Consider an economy with N assets indexed by n = 1, . . . , N and I investors indexed by i = 1, . . . , I.

We denote the outside asset as the 0th asset. Furthermore, let Pt(n) and St(n) denote the price and shares

outstanding of asset n at time t respectively. We denote the logarithms of these variables in lowercase

letters and the N-dimensional vectors in boldface. Suppose each asset has K characteristics indexed by k =

1, . . . , K so that the kth characteristics of asset n at time t is denoted xkt(n) and the vector of characteristics

is denoted xt(n).

INVESTOR DECISIONS Investor i optimally chooses at each time t her weights on these assets wit. De-

noting the asset under management of investor i at time t by Ait, investor i maximizes expected termi-

nal wealth Eit[log(AiT)] under the intertemporal budget constraint.9 Investors face short-sale constraints,

wit ≥ 0 and 1′wit < 1. Investors have heterogeneous beliefs about expected returns of assets, which they

form by considering the observed characteristics. Investor i’s unobserved latent demand for asset n is

9As in Pástor et al. (2021), we can have sustainability enter the utility directly, but we derive our results without doing so for
now.
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denoted log(ϵit(n)). Then investor i’s information set for asset n can be written as

x̂it(n) =


met(n)

xt(n)

log(ϵit(n))

 (2)

and an Mth-order polynomial of this vector can be written as

yit(n) =


x̂it(n)

vec(x̂it(n)x̂it(n)′)
...

 , (3)

which determines the investors’ beliefs about expected returns.

FACTOR STRUCTURE We maintain Assumption 1 of Koijen and Yogo (2019), so that the covariance of log

excess returns, relative to the outside asset, is Σit = ΓitΓ′
it + γitI, where Γit is a vector of factor loadings

and γit > 0 is idiosyncratic variance, and that expected excess returns and factor loadings are polynomial

functions of characteristics:

µit(n) = yit(n)′Φit + ϕit

Γit(n) = yit(n)′Ψit + ψit (4)

where Φit and Ψit are vectors and ϕit and ψit are scalars that are constant across assets. In other words,

returns have a one-factor structure and an asset’s own characteristics are sufficient for its factor loadings.

SUSTAINABILITY AS CHARACTERISTICS Importantly, we further assume that firm-level sustainability

metrics are included in the vector of characteristics xt(n). In Appendix C.1, we use an example of one sus-

tainability metric to show that sustainability can enter an investor’s characteristic-based demand function

if either it is either informative about the expected returns or the investor faces a “minimum sustainability

constraint”. Moreover, Appendix A of Koijen and Yogo (2019) shows that a particular coefficient restric-

tion implies that the investors’ optimal portfolio weights follow logit functions of prices, characteristics,

and latent demand. In other words, optimal portfolio weight for stock n, for investor i, at a given period t

satisfies:
wit (n)
wit (0)

= exp
(
b0,it + β0,itmet (n) + β′

1,itxt (n)
)

ϵit (n) (5)

with sustainability entering as part of the characteristics xt(n).
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3.2 IMPLEMENTATION

We estimate the demand model for investor i for a given quarter t, which can be written as:

∀i, ∀t :
wit (n)
wit (0)

= exp
(
b0,it + β0,itmbt (n) + β′

1,itst (n) + β′
2,itx

∗
t (n)

)
ϵit (n) (6)

where mbt (n) is the log market-to-book ratio of asset n at time t. st (n) denotes the cross-sectionally stan-

dardized sustainability characteristics: emissions intensity, environmental score, and green patents. x∗t (n)

denotes other cross-sectionally standardized characteristics: log book equity, profitability, investment, div-

idend to book equity, market beta, and non-green patents. Note that we follow Koijen et al. (2022) to use

log market-to-book ratio as the measure for price. The coefficients β′
1,it measure investor i’s demand for the

three sustainability characteristics, after controlling for all other stock characteristics.

We use the same identification assumption as Koijen and Yogo (2019) for estimating Equation (6): we

assume the latent demand ϵit(n) is exogenous to all stock characteristics except log market-to-book ratio,

all investors’ AUM Ait, and all investors’ investment universes Nit. Under these assumptions, mbt(n) is

the only endogenous regressor in (6) as mbt(n) is correlated with latent demand ϵit(n) through market

clearing.

To instrument for mbt(n) in the demand estimation for investor i, we construct counterfactual log mar-

ket capitalization of stock n if all investors other than i or the household sector holds an equal-weighted

portfolio of their investment universes:

m̃ei,t(n) = log
(

∑
j ̸=i,HH

Ajt
1{n ∈ Nit}

1 + |Nit|

)
(7)

Based on the identification assumptions above, the instrument m̃ei,t(n) for investor i is exogenous to the

investor’s latent demand ϵit(n), and thus the instrument satisfies the exclusion restriction:

Et [ϵit (n) | xt (n) , st (n)] = 1.

The instrument satisfies the relevance condition because all else equal, stocks held by more and larger

investors tend to have higher market capitalization and thus higher market-to-book ratio. Koijen and Yogo

(2019) documents that the instrument has high first-stage t-statistics that pass the Stock and Yogo (2005)

test for weak instruments. We use non-linear GMM to estimate the demand equation (6) based on the

instrument m̃ei,t(n) and all non-price characteristics.

4 ESTIMATED DEMAND FOR SUSTAINABILITY

In this section, we summarize the estimated demand curves and highlight three key patterns. First, we doc-

ument strong heterogeneity in demand for sustainability across investors—in particular, more price-elastic
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investors exhibit higher demand for sustainability in terms of both environmental score and emission in-

tensity. Second, we show that the increasingly negative demand for emissions intensity is primarily driven

by within-investor demand shifts rather than across-investor shifts in AUM. Third, we find that higher

active share, and lower portfolio turnover are associated with stronger sustainability demand, while in-

dicators for value investors or signatories of the United Nations Principles for Responsible Investment

(UNPRI) are not significantly correlated with sustainability demand.

4.1 SUMMARY STATISTICS OF ESTIMATED DEMAND COEFFICIENTS

The estimated demand system reveals a strong heterogeneity in demand for sustainability across investors

behind the valuation patterns. In particular, active investors are more price-elastic and exhibit higher

demand for sustainability, which suggests that they are not “undoing” sustainable investing but rather

playing a key role in driving and maintaining the valuation gap.

Table 3 provides summary statistics of our estimated demand coefficients. We compute the summary

statistics across investors in every quarter, and then take an equal-weighted average across quarters. First,

the demand for environmental score is positive on average, with an AUM-weighted average coefficient of

0.031. The demand for emissions intensity is negative on average, with an AUM-weighted average coef-

ficient of -0.023. These coefficients mean that an average investor increases its demand by 3.1% per one

standard deviation higher environmental score, and decreases its demand by 2.3% per one standard devi-

ation higher emissions intensity. Therefore, investors have positive demand for sustainability on average,

and they have positive preference for two orthogonal measures of environmental performance—emissions

intensity and environmental score. Moreover, the demand coefficients for these two green characteristics

have comparable magnitudes with coefficients for the five non-green characteristics.

The demand for green patents is near zero on average, with an AUM-weighted average coefficient of -

0.003 for green patents. In comparison, the demand for a firm’s overall innovation (measured by non-green

patents) is positive, with an AUM-weighted average coefficient of 0.02. Therefore, the average investor in

our sample does not have specific preference for green patents. In addition, we observe strong hetero-

geneity of demand across investors: the equal-weighted 10th/90th percentile of demand coefficients are

-0.287/0.343 for environmental score, and -0.394/0.190 for emissions intensity. In line with Koijen and

Yogo (2019) and Koijen et al. (2022), this result highlights the importance of allowing cross-investor hetero-

geneity for understanding demand for sustainability.

Figure 2 summarizes the relationship between pairs of demand coefficients across investors through

binscatter plots. Panel (a) shows that price-elastic investors have higher demand for sustainability on

average for both environment score and emissions intensity. Because active investors tend to be more

price-elastic10, these results provide the first evidence that active investors are not “undoing” sustainable

demand by aggressively buying brown stocks. In contrast, the stronger sustainable demand for price-

10The average quarterly cross-sectional correlation between active share and price inelasticity is -0.30.
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elastic investors suggests that they play an important role in creating the valuation gap between green and

brown stocks, as the demand of price-elastic investors have higher relative impact on valuation (Koijen

et al., 2022). Furthermore, panel (b) of shows that investors with higher demand for environment score

also tend to have larger negative demand for emissions intensity. These results suggest that “green in-

vestors” consider both the actual emission of a firm and its third-party environmental rating when making

sustainable investment decisions.

Finally, in Figure 3, we study the time trends in the AUM-weighted average coefficients for all investors

as well as by broad investor types, which provides a validation of our exercise with respect to the valuation

regression results. First, across all investor types, the average demand coefficient for environmental score is

positive and stable over time, while the average demand coefficient for emissions intensity is negative and

increasing in magnitude over time. These results are consistent with the time series of valuation regression

coefficients in Figure 1, where the valuation gap between stocks with high and low environmental scores

is positive and stable over time, and the valuation gap between high- and low-emission stocks is negative

and opening up over time.

Second, we observe that the increasing demand for low-emission stocks is driven by both active and

passive institutional investors. For active institution types, the average demand coefficient for emissions

intensity decreased from -0.013 in 2013Q1 to as low as -0.105 in 2020Q2. For passive institution types, this

coefficient decreased from -0.008 in 2013Q1 to -0.040 in 2021Q3. These results suggest that the shift in asset

demand towards low-emission firms is a broad-based trend across different investor types.

4.2 WITHIN-INVESTOR DEMAND OR ACROSS-INVESTOR AUM SHIFT?

The trend of increasing overall demand for low-emission firms could come from two sources: (i) a within-

investor preference shift towards low-emission stocks, or (ii) a shift of AUM away from “brown” investors

who prefer high-emission stocks, towards “green” investors who prefer low-emission stocks. We next

show that the increasingly negative demand for emissions intensity is primarily driven by within-investor

demand shifts rather than across-investor shifts in AUM.

To quantify the relative importance of each in driving the shift in overall demand, Figure 4 plots the

time series of average demand coefficient for emissions intensity against a counterfactual series where

there is no within-investor preference shift. To construct this counterfactual, let T0,i be the first quarter

when investor i appears in our sample, and let βi,GHG,t be investor i’s demand coefficient for emission

in quarter t. With these notations, βi,GHG,T0,i is investor i’s demand coefficient for emission in its earliest

quarter in our sample. In each quarter, we compare the AUM-weighted average of demand coefficients

βi,GHG,t against the counterfactual coefficients if there was no preference shift over time, βi,GHG,T0,i :

β̄GHG,t := ∑i Ai,tβi,GHG,t

∑i Ai,t
(Actual Data)
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β̄∗
GHG,t :=

∑i Ai,tβi,GHG,T0,i

∑i Ai,t
(No Within-Investor Preference Shift)

Figure 4 shows that the decrease of β̄GHG,t over time—from -0.009 in 2013Q1 to -0.035 in 2021Q3—is

almost entirely driven by preference shift within investor. If each investor’s demand coefficient had stayed

constant over time, the average demand coefficient for emissions intensity would only decrease from -0.009

in 2013Q1 to -0.014 in 2021Q3. Therefore, the overall demand shift towards low-emission stocks is mostly

driven by portfolio rebalancing decisions of each investor, rather than a shift of AUM from “brown” to

“green” investors.

To formally test the analysis above, we also regress the emission demand coefficient βi,GHG,t on a time

trend with investor fixed effects. Within each quarter, the investors are weighted by their AUM. If the

time trend of decreasing coefficients is purely driven by the shift of AUM across different investors, the

time trend should not be significant after controlling for investor fixed effects. On the other hand, if the

time trend is driven by within-investor change of demand, the time trend should remain significant after

controlling for investor fixed effects.

Table 4 displays the regression results. Column (1) shows the time trend without controlling for investor

fixed effects, and column (2) show the time trend after controlling for investor fixed effects. We observe

that adding investor fixed effects has little impact on the time trend coefficient: the time trend coefficients

in columns (1) and (2) are not statistically significantly different from each other. Therefore, these results

further bolster our finding that the time trend of increasing demand towards low-emission stocks is mainly

driven by within-investor demand shifts, rather than a shift of AUM across investors. In Appendix B.3,

we further confirm this finding using a counterfactual analysis where we reverse the investor-changes in

demand for sustainability as well as the changes in AUM.

We note that our results here are complementary to and independent from the finding of van der Beck

(2021) that the outperformance of sustainable stocks from 2016 to 2021 can be entirely attributed to the

flow-driven price pressure from end investors’ portfolio reallocation from non-sustainable to sustainable

mutual funds. The finding of van der Beck (2021) shows that the AUM shift between mutual funds is

important, but in our institution-level data, shift of AUM between funds provided by a same institution

will be reflected as a within-institution demand shift in our analysis. For example, if many retail investors

shifted their investment from a Vanguard value-stock fund into a Vanguard sustainable fund, the total

AUM of Vanguard would not change, but Vanguard’s green demand coefficients will increase. Therefore,

as long as most flows from non-sustainable to sustainable mutual funds occur among funds provided by

a same institution, our results are consistent with van der Beck (2021). Furthermore, our sample of all 13F

institutional investors is much larger than the equity mutual funds and thus our findings provide new

insights on the recent growth of sustainable investing.
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4.3 CROSS-SECTIONAL PATTERNS

In this section, we examine the relationship between green demand and investor characteristics via cross-

sectional regressions. In the cross-section of investors, we find that higher price elasticity, higher active

share, and lower portfolio turnover are all associated with stronger sustainability demand. On the other

hand, value investors and signatories of the UNPRI do not have significantly different demand for sustain-

ability.

4.3.1 INVESTOR CHARACTERISTICS

For each of our three sustainability measures, we regress the investor-quarter level demand coefficients

on four continuous (price inelasticity, log AUM, active share, and quarterly portfolio turnover) and seven

investor style or type indicators. For the indicators, we include one dummy variable for non-US investors,

two investment style indicators for value and growth, and four investor type indicators for hedge funds,

private banking, long-term, and broker-dealer (the left-out type is investment advisors). We control for

time fixed effects to make the comparison across investors within each quarter, and we exclude the house-

hold sector from this analysis.

Table 5 reports the cross-sectional regression results. First, columns (1) and (2) of the table show that

higher price elasticity, higher active share, and lower portfolio turnover are all associated with stronger

sustainability demand, for both environmental score and emissions intensity. Also, growth investors have

stronger sustainability demand than “generalist” investors who do not classify as either value or growth.

We also find that foreign (non-U.S.) investors have stronger sustainability demand than U.S. investors,

which complements the findings in Dyck et al. (2019) and may reflect Krueger et al. (2020) which highlights

the importance of geographical origins for investors’ sustainability preferences.

Second, compared with investment advisors, hedge funds have higher demand coefficients for both

environmental score and emissions intensity—i.e., hedge funds have stronger preference for stocks with

higher environmental score and higher emission. On one hand, to the extent that emission is a cleaner

measure of firms’ current environmental performance than environmental scores, these result could be

interpreted as evidence of “green window dressing” for hedge funds. Hedge funds might buy more high-

environmental score stocks to boost their portfolio score, but at the same time buy more high-emission

stocks11. On the other hand, because higher environmental score predicts lower future emission in the

cross-section of stocks (Table A1), we can also interpret the results as evidence that hedge funds prefer

stocks that have high current emission but better emission reduction potential in the future.

Finally, investors classified as “value” by FactSet do not have significantly different sustainability de-

mand compared with “generalist” investors. Together with our finding that price-elastic investors tend

11We only propose “green window dressing” as one potential explanation of the hedge fund coefficients in Table 5. While we
do not seek to prove the existence of “green window dressing”, we note that this proposition is in line with the finding of Liang
et al. (2021) that many hedge funds engage in “green washing”—i.e., holding a brown portfolio while advertising themselves as
green investors.
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to have stronger green demand, this result alleviates the popular concern of value investors “undoing”

sustainable investing by buying up brown stocks.

4.3.2 UNPRI SIGNATORY

We also examine whether signatories of the United Nations Principles for Responsible Investment (UNPRI)

have stronger sustainable demand. The UNPRI describes itself as the “leading proponent of responsible

investment” and one of its six main principles is that “[investors] will be active owners and incorporate

ESG issues into our ownership policies and practices.”12 We use fuzzy string matching to match the UNPRI

signatory list with the institutional investors in FactSet data. In an average quarter in our sample, 9.9% of

institutional investors are UNPRI signatories, but they constitute 38.9% of total institutional AUM. The

fraction of institutional AUM controlled by UNPRI signatories has grown from 18.1% in 2013Q1 to 52.1%

in 2021Q3.

However, we show from cross-sectional and time-series regressions that UNPRI signatory status is

not associated with higher sustainable demand. Table A2 shows that after controlling for other investor

characteristics, UNPRI signatories do not exhibit higher sustainable demand than non-signatories13. Table

A3 further shows that signing the UNPRI is not significantly associated with any within-investor demand

change, after controlling for within-investor time trends. Our results are consistent with the findings of

Kim and Yoon (2022) and Liang et al. (2021) that investors who signed the UNPRI have not necessarily

increased their sustainable portfolio holdings.

5 INVESTOR PRESSURE FOR SUSTAINABILITY AND REAL EFFECTS

Using the estimated demand system, we next study the real effects of sustainable investing. To achieve

this goal, we first use the estimated demand curves to quantify investor pressure for sustainability, which

captures the price pressure a firm receives, through investor demand, to become more sustainable. While

the average firm has experienced greater investor pressure to become more sustainable, we find that higher

investor pressure today predicts greater future sustainability only to a limited extent, thus highlighting the

limited real impact of sustainable equity investing.

5.1 QUANTIFYING INVESTOR PRESSURE

We first derive a closed-form expression for investor pressure and show that the average firm has expe-

rienced greater investor pressure to become more sustainable. Importantly, we show that the investor

12See UNPRI’s website for these descriptions of the main principles (https://www.unpri.org/about-us/about-the-pri) and
the signatory list (https://www.unpri.org/signatories/signatory-resources/signatory-directory), last accessed in De-
cember 2022.

13Without controls, UNPRI signatories have statistically significant higher demand only for environmental score.
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pressure is the average of the coefficients on sustainability of the firm’s investors adjusted for their price

elasticity.

We define the investor pressure of firm n for the kth sustainability characteristic sk,t(n) as the equi-

librium price impact of a small change in sk,t(n), holding all other stock characteristics and all investor

demand curves constant:

∂mbt (n)
∂sk,t(n)

. (8)

This can be computed analytically from the demand system as below, with the proof in Appendix C:

Proposition 1. The price impact of a change in the value of sustainability characteristic k for firm n, denoted as M,

is given as the nth diagonal element of the matrix

M :=
∂p
∂sk

=

(
I − ∑

i
β0i AiH−1Gi

)−1(
∑

i
βki AiH−1Gi

)
(9)

where βki is investor i’s demand coefficient for sustainability characteristic sk, and we omit time subscripts for sim-

plicity. The matrices H and Gi are defined as follows:

H := diag

(
∑

i
Aiwi

)
= ∑

i
Aidiag (wi)

Gi := diag (wi)− wiw′
i.

The quantity Mn,n, which is the nth diagonal entry of M, can be interpreted as the price pressure that

a firm receives through investor demand. Put differently, it represents the firm’s marginal benefit in terms

of stock valuations derived from increasing its sustainability characteristic sk,t(n).14 Public firms have

incentive to increase their stock valuations as they are related to both equity cost of capital and value of

share-based compensations.

Because we hold latent demand constant in the calculations above, the measure of investor pressure

only captures the intensive margin of investor demand and thus is a lower bound on the actual investor

pressure that a firm may receive. If substantial variation in holdings operates through the extensive margin,

then the current methodology understates how mbt(n) could change with st(n) as new investors would

start to hold the stock if the firm improves sufficiently. We note, however, that such response on the

extensive margin is not a first-order concern in our setup, as Koijen and Yogo (2019) shows that the set

of stocks that institutions invest in is usually small and highly persistent.

14We recognize that ideally, we need a fully micro-founded model with the supply side, or the firm side, of the demand system
to relate this quantity back to the firms’ objectives. Only in this way can we also account for the adjustment cost of making the
marginal change, but this is outside the scope of this paper. Instead, we control for observed firm characteristics and industry
classification in our empirical analysis and argue that doing so we can compare firms with similar adjustment or marginal cost of
changing the characteristic in question.
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The matrix inside the inverse in Equation (9) is the aggregate demand elasticity. Therefore, the valuation

of a stock reacts more to a change in characteristic if the stock is held by less price-elastic investors15. In

addition, the nth diagonal entry of the second term is

∑i βki Aiwi(n)(1 − wi(n))
∑i Aiwi(n)

. (10)

This quantity can be viewed as an AUM weighted average of the coefficients on the sustainability char-

acteristic. Therefore, investor pressure for a given firm n is a weighted average of sustainability demand

coefficients of its institutional owners, adjusted for their price elasticity. If a firm faces a representative

owner who is price inelastic and exhibits a high coefficient on the sustainability characteristic, this firm

faces a large investor pressure on that dimension of sustainability.

Table A4 reports the summary statistics for investor pressure of each sustainability characteristic. The

average investor pressure for environmental score is 0.063: an average firm could expect its valuation to

increase by 0.63% if it improves environmental score by 0.1 standard deviation. The average pressure for

emissions intensity is -0.084: an average firm could expect its valuation to increase by 0.84% if it improves

Scope 1 carbon emissions intensity by 0.1 standard deviation. The average pressure for green innovation

is close to zero. In addition, the investor pressure for each characteristic shows strong heterogeneity across

stocks. For example, the investor pressure for emission is -0.192 at 10th percentile and 0.004 at 90th per-

centile.

Figure 5 plots the average of investor pressure across stocks for each sustainability characteristic in each

quarter. The investor pressure for environmental score is positive and roughly constant over time, and the

investor pressure for carbon emissions intensity is negative and increasing over time in magnitude (a near

twofold increase from -0.039 in 2013Q1 to -0.110 in 2021Q3). The investor pressure for green innovation is

around zero for the entire sample. These results are in line with the time series evolution of sustainable

demand coefficients, as discussed in Section 4.2.

The increasing investor pressure against carbon emission complements our previous finding in Section

4.3 that the trend towards higher sustainable demand has not been “undone” by price-elastic investors.

Because investor pressure for a characteristic is increasing in the demand for that characteristic but de-

creasing in investors’ price elasticity, one might be concerned ex ante that if investors have become more

price-elastic over time, the increasing demand for low-emission stocks we documented in Section 4.2 may

not translate into higher investor pressure. Figure A1 shows that this concern is not realized: the investors

on average has in fact become more price inelastic during our sample period, as the average price inelas-

ticity coefficient (β0,i,t) increased from 0.67 in 2013Q1 to 0.72 in 2021Q3. Therefore, both the increasing

demand for low-emission stocks and the decreasing price elasticity contribute to higher investor pressure

for the emission characteristic.

15The intuition is that a change of characteristic induces change in characteristic-based demand. A same amount of demand
shift creates stronger price pressure in stocks with less price-elastic demand curves.
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5.2 INVESTOR PRESSURE AND FUTURE ENVIRONMENTAL PERFORMANCE

We next examine whether a firm’s investor pressure is associated with its future environmental perfor-

mance. Table 6 shows results from regressing future 1-year environmental performance on a stock’s char-

acteristics and investor pressures. Column (1) shows that in the cross-section, 1 standard deviation higher

pressure for environmental score predicts 0.0187 standard deviation higher change of environmental score

over the next year. Column (2) shows that a 1 standard deviation higher pressure for emission (more nega-

tive pressure) predicts 0.0251 standard deviation more reduction of emissions intensity over the next year.

Column (3) shows similar results for green innovation. Table A5 further shows that the results are robust

for 2-year and 3-year future environmental performances.

We draw two conclusions from the regression results. One one hand, the coefficients highlighted above

are positive and statistically significant after controlling for a stock’s current non-green and green charac-

teristics. Therefore, higher investor pressure predicts better future environmental outcomes in the cross-

section, even after controlling for current green performance. On the other hand, the relationship between

investor pressure and future 1-year environmental outcome is very small in magnitude. The small magni-

tude might be due to both the indirect relationship between stock valuation and firm decision making and

the long time needed to make environmental improvements.16

Taken together, our results in this section show that the average firm has experienced greater investor

pressure to reduce its carbon emissions intensity, but higher investor pressure today only has weak predic-

tive power for future sustainability performance.

6 COUNTERFACTUALS AND ASSET PRICING IMPLICATIONS

We next study the asset pricing effects of sustainable equity investing through two counterfactual scenarios

related to investor preferences and measures of sustainability. Specifically, we calculate counterfactual asset

prices under each scenario and examine how the valuation patterns from Section 2.2 subsequently change.

The steps for computing counterfactuals closely follow the algorithm in Koijen and Yogo (2019), which

we detail in Appendix D. In the first counterfactual, we explore the impact of imposing ESG-agnostic

mandates on select investors. In the second, we consider incorporating the firm’s green patents, which is

not demanded by investors, into the construction of the environment score, a characteristics that is heavily

demanded.

16Stock valuation could affect firm decision making in two ways: first through expected stock return and thus the firm’s cost
of equity capital, and second through the incentive for firm management through stock-based compensations. Both relationships
are indirect in nature, therefore a large change of valuation might be needed to generate a small change of management incentives
and real investment decisions.
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6.1 IMPACT OF ESG-AGNOSTIC MANDATES

In the first counterfactual analysis, we “shut off” the demand for sustainability of select investors to ex-

amine the contribution of different investors to the valuation of sustainability characteristics. Our coun-

terfactual exercise corresponds to “ESG-agnostic” policies that force a subset of investors to not consider

sustainability in their portfolio choice decisions.

Specifically, we consider three counterfactual scenarios where we set the demand coefficients for all

three sustainable characteristics to zero for: (a) active institutions, (b) all institutions, and (c) all investors

including the household sector.17 In each scenario, we regress counterfactual valuations on stock charac-

teristics as in Section 2.2, and we focus on the coefficients (“valuation gap”) on the three green character-

istics. We attribute the difference between actual data and scenario (a) to active institutions, the difference

between scenarios (a) and (b) to passive institutions, and the difference between scenarios (b) and (c) to

households18. Any remaining valuation gap in counterfactual scenario (c) for green characteristics are

driven by the extensive margin of asset demand.19

Table 7 shows the valuation regression coefficients on three green characteristics under each counter-

factual scenario: panel (a) for the full sample from 2013 to 2021, and panel (b) for the subsample from 2018

to 2021. First, the coefficients for environmental score in panel (a) show that the valuation gap between

high-environmental score and low-environmental score stocks are not driven by the green demand of in-

stitutional investors. In the data, stocks with 1 standard deviation higher environmental score is associated

with 10.7% higher market-to-book ratio on average. This valuation gap becomes 9.51% if we shut off the

green demand of all institutional investors in column (3), and it becomes 5.4% if we shut off green demand

of all investors in column (4). Therefore, the positive relationship between environmental score and val-

uation is driven roughly in half by the households’ demand for high environmental score stocks, and in

another half by the extensive margin of asset demand. On the extensive margin, Table A7 provides sugges-

tive evidence that stocks with higher environmental score appear in the investment universe of a higher

fraction of institutional investors, after controlling for other characteristics. Therefore, stocks with higher

environmental score would have higher valuation even without any sustainable demand on the intensive

margin.

Second, the coefficients for emissions intensity in both panels show that the gradually increasing val-

uation gap between low- and high-emission stocks is entirely driven by the green demand of institutional

investors. Column (3) of panel (a) shows that emissions intensity would become positively correlated with

17Same as Section 4.2, we define “passive” institutional investors as large investment advisors, medium- or small-passive in-
vestment advisors, and long-term investors; and we define “active” institutional investors as medium- or small-active investment
advisors, hedge funds, private banking, and brokers.

18Note that this attribution is subject to the order in which we shut off green demand for different types of investors. Table A6
shows that our results are similar when we shut off the demand for passive institutions before active institutions.

19The asset demand system we estimate only models the intensive margin of asset demand as a function of stock characteristics.
If a stock characteristic is correlated with the extensive margin of portfolio choice (i.e., the fraction of investors that hold the stock
in their portfolios, or have the stock in their investment universes), then the stock characteristic will still be positively correlated
with stock valuation even without any demand for it on the intensive margin.
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valuation in the full sample if we shut off the green demand of all institutions. Column (3) of panel (b) also

shows that the negative relationship between emissions intensity and valuation from 2018 to 2021 would

disappear if we shut off green demand of all institutions. Together, these results show that the demand of

institutional investors against high-emission stocks is the main driver of their lower valuations.

Finally, the coefficients for emissions intensity in panel (b) also show that active and passive institutions

contribute equally to the valuation gap between low and high-emission stocks. In the 2018-2021 sample, 1

standard deviation higher emissions intensity is associated with a 6.45% lower market-to-book ratio. This

valuation gap is reduced to 3.45% if we shut off the green demand for active institutions in column (2) and

becomes a statistically insignificant at 0.31% if we shut off the green demand for all institutions in column

(3). Figure 6 also provides visual evidence by plotting the time series of quarterly valuation regression

coefficients for emissions intensity in the data and the counterfactual scenarios. Together, these results

reinforce our previous finding that active institutional investors as a whole are contributing to sustainable

investing thanks to their demand for low-emission stocks instead of “undoing” sustainable investing by

buying up high-emission stocks.

6.2 HYPOTHETICAL ESG RATINGS: INCORPORATING GREEN INNOVATION

In previous analyses, we show that our measure of green innovation—ratio of green patents to asset—is

not correlated with valuation in the cross-section, and does not have positive characteristic demand from

investors on average. We also showed in panel (b) of Table A1 that our green patents measure is negatively

correlated with environmental score. Because investors have positive demand for the environmental score

on average, we can possibly increase the valuation of top green innovators—thereby encouraging their

green innovation effort—by incorporating green innovation into the construction of environmental score.

For example, if MSCI adjusts its environmental score definition to make the score higher for top green in-

novators, investors with positive demand for environmental score will be attracted to these top innovators,

which will in turn push up their valuation.

In the second counterfactual analysis, we show that this change would increase the valuation of top

green innovators that produce the most green patents, but at the same time the valuation gap between

low- and high-emission stocks will still persist in the counterfactual equilibrium. These results show that

the proposed change could increase firms’ incentive to produce green patents without jeopardizing the

main effect of sustainable investing on the valuation of emission.

6.2.1 SETUP AND ASSUMPTION

To proceed with the counterfactual, we start by increasing the environmental score for top 20% green inno-

vators, ranked by our green patent characteristic. Specifically, we increase the standardized environmental

score by 1.0 for top 20% green innovators in each quarter, and re-standardize the modified environmental

score within each quarter. In an average year, the top 20% of green innovators develop 8,163 green patents,

22



which make up 95.5% of the annual green patents developed by the firms in our sample.

Importantly, we keep all demand coefficients unchanged in these counterfactual simulations. Thus, our

analyses is based on the assumption that modifying the content of environmental score will not change in-

vestors’ demand curves for the standardized environmental score. While this assumption is strong and

cannot be empirically verified, we offer two supporting arguments for making this assumption. First,

institutional investors’ demand for high-environmental score stocks is at least partially driven by an envi-

ronmental score target, which can be either required by end investors or self-imposed in order to attract

flows (see, e.g., Hartzmark and Sussman (2019) for evidence of mutual fund investors chasing funds with

high sustainability rating on Morningstar). This type of demand for high-environmental score stocks is

likely unrelated to the specific content of environmental score and thus unlikely to change in our counter-

factual scenario. Second, green innovation is more likely to be perceived by investors as a positive signal

for better future environmental performance (or financial performance, if the green technology like electric

vehicle can be monetized). Therefore, it is unlikely that investors will reduce their environmental score

demand if they know that environmental score becomes more correlated with green innovation. Based on

these two reasons, we keep the demand coefficients unchanged in these counterfactual simulations.

6.2.2 RESULTS

In Table 8, we examine the difference of log market-to-book ratios between actual data and our counterfac-

tual simulation. Column (1) shows that in the counterfactual simulation, the average log market-to-book

ratio for the top 20% green innovators will increase by 0.047, and the average log market-to-book for other

stocks will decrease by 0.022. These can be interpreted as a 4.7% increase of market-to-book for the top

green innovators, and a 2.2% decrease of market-to-book for other stocks20. Columns (2) and (3) show

that the relative valuation change between green innovators and non-innovators stays roughly the same

after controlling for time fixed effects and non-green characteristics. Therefore, our proposed change of

environmental score construction would move stock valuations in the intended direction.

Given the positive correlation between green innovation and current emissions intensity, one might be

concerned that our proposed change of environmental score would also increase the valuation for high-

emission stocks. Column (4) of Table 8 shows that this concern is unnecessary: the valuation regression

coefficient on emissions intensity does not change significantly in the counterfactual simulation. This re-

sult shows that our proposed change of environmental score can be implemented without attenuating

the existing achievement of sustainable investing (i.e., the valuation gap between low- and high-emission

stocks).

20These results are based on the average of log market-to-book ratios across innovator or non-innovator stocks. Alternatively,
we can treat each type of stocks as one asset and computes its aggregated market-to-book (sum of market equity divided by sum
of book equity). Using this method, the valuation for top 20% of green innovators will increase by 7.17% in an average quarter,
and the valuation for non-green-innovators will decrease by 3.62% in an average quarter.
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7 CONCLUSION

In this paper, we investigate the heterogeneity in investor demand for sustainability and study its impli-

cations for firm decisions and asset prices. By utilizing a comprehensive set of measures for firm sus-

tainability as well as a structural asset demand system, we provide a more nuanced understanding of the

heterogeneous demand for sustainability among investors. Our findings suggest that while investors do

value third-party environment scores and low emissions intensity, they do not value firms that innovate in

sustainable technologies. In addition, investor pressure generated by these demand patterns translate into

only limited improvements in firm sustainability.

Overall, we contribute to the ongoing conversation about sustainable equity investing by providing a

more detailed understanding of investor demand for sustainability and its implications for the effective-

ness of sustainable equity investing. Our framework could be used by future research to explore how

the demand for sustainability varies across different regions (e.g. U.S. vs. Europe) or asset markets (e.g.

green bonds), or to study sustainable demand at a more granular level (e.g. for individual mutual funds

or households). We leave these directions for future research.
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Table 1: Summary Statistics

(a) Distribution of Characteristics

Characteristic Count Mean Std. Dev. Min Q10 Q50 Q90 Max % Miss

Market Equity 64184 14.0 51.7 0.3 0.8 3.0 27.4 2324.4 0
Market / Book 64184 8.8 160.2 0.0 1.1 2.8 10.5 18596.4 0
Profit / Asset 64184 0.26 0.22 -0.50 0.04 0.23 0.55 0.98 0
Asset Growth 64184 0.10 0.20 -0.52 -0.07 0.06 0.33 1.20 0
Dividend / Book Equity 64184 0.04 0.05 0.00 0.00 0.02 0.10 0.29 0
CAPM Beta 64184 1.24 0.60 -0.34 0.52 1.18 2.02 3.34 0
Non-Green Patents (bps) 64184 315 687 0 0 11 1065 3525 0
Green Patents (bps) 64184 15 43 0 0 0 42 293 0
Environment Score 54142 -1.56 1.33 -8.55 -3.50 -1.29 -0.17 0.00 0.101
Emissions Intensity 47510 189.7 660.8 0.1 0.7 13.6 343.3 6315.6 0.039

(b) Investors by Type (Average Across Quarters)

Count AUM ($bil) AUM Share Active Share

Large IA 25 9178.2 0.307 0.301
Medium-Passive IA 42 2156.0 0.073 0.287
Medium-Active IA 43 1899.6 0.066 0.592
Small-Passive IA 854 1523.0 0.051 0.412
Small-Active IA 917 2074.4 0.072 0.659
Long Term 104 1060.6 0.037 0.344
Hedge Funds 351 975.4 0.034 0.711
Brokers 83 910.6 0.031 0.511
Private Banking 816 690.1 0.023 0.530
Household 1 9065.5 0.307 0.212

This table reports the summary statistics for select variables. Panel (a) provides the distribution of stock characteris-
tics. Panel (b) summarizes the investor types in our sample. The provided statistics are computed for each quarter
and then averaged across quarters. In panel (a), profitability is defined as revenue minus cost of goods sold; asset
growth rate is computed over 1 year; dividend to book equity is computed based on rolling 1-year dividend; and
CAPM beta is estimated based on rolling 60 months of data. In panel (b), active share is defined as one half of sum
of the difference between the weight of each stock in the portfolio and the market weight.
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Table 2: Valuation Regressions

Dependent Variable: Log Market-to-Book

(1) (2) (3)
Full Sample 2013-2017 2018-2021

Log Book Equity -0.390∗∗ -0.349∗∗ -0.451∗∗
[-18.78] [-16.80] [-17.66]

Profit / Asset 0.198∗∗ 0.188∗∗ 0.217∗∗
[12.08] [10.95] [10.35]

Asset Growth 0.121∗∗ 0.0990∗∗ 0.147∗∗
[9.542] [6.816] [7.952]

Dividend / Book Equity 0.274∗∗ 0.261∗∗ 0.292∗∗
[16.68] [13.85] [15.54]

CAPM Beta -0.0482∗∗ -0.0442∗∗ -0.0535∗
[-3.483] [-3.218] [-2.199]

Non-Green Patents 0.142∗∗ 0.114∗∗ 0.184∗∗
[7.961] [6.517] [8.175]

Environment Score 0.107∗∗ 0.0952∗∗ 0.115∗∗
[8.191] [6.738] [6.767]

Emissions Intensity -0.0156 0.0133 -0.0645∗∗
[-1.153] [1.056] [-4.261]

Green Patents 0.00359 0.0121 -0.0115
[0.237] [0.715] [-0.603]

Year-Quarter FE ✓ ✓ ✓
Within R2 .393 .377 .425
Observations 64184 37933 26251

This table summarizes the results from the valuation regression as shown in Equation (1).
Specifically, we regress the market-to-book ratio on a vector of time-varying firm characteris-
tics and year-quarter fixed effects. As sustainability characteristics, we include environment
score, emissions intensity, and green patents as described in Section 2.1. Column (1) displays
the results based on the entire sample, while columns (2) and (3) display results for sub peri-
ods. Standard errors are clustered by year-quarter.
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Table 3: Demand Coefficients: Summary Statistics

AUM-Weighted Equal-Weighted

Mean SD Mean SD Q10 Q50 Q90

Log Market to Book 0.699 0.365 0.349 0.615 -0.485 0.454 0.990

Log Book Equity 1.275 0.406 0.693 0.598 -0.053 0.674 1.498

Profitability 0.010 0.179 0.046 0.371 -0.376 0.034 0.480

Asset Growth 0.031 0.151 0.082 0.327 -0.279 0.057 0.476

Dividend / Book 0.079 0.205 0.027 0.336 -0.370 0.019 0.436

Market Beta -0.028 0.176 -0.092 0.374 -0.556 -0.067 0.339

Non-Green Patents 0.020 0.210 -0.052 0.472 -0.562 -0.021 0.423

Environment Score 0.031 0.130 0.023 0.272 -0.287 0.013 0.343

Emissions Intensity -0.023 0.126 -0.085 0.251 -0.394 -0.061 0.190

Green Patents -0.003 0.168 -0.026 0.376 -0.407 0.004 0.341

This table provides summary statistics for the demand coefficients estimated from Equation (6). The
three sustainability characteristics—environment score, emissions intensity, and green patents—are as
described in Section 2.1. For each coefficient, we compute the summary statistics across investors in
every quarter and then construct an AUM(equal)-weighted average across quarters.
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Table 4: Demand for Emissions Intensity: Time Trend Analysis

Dep Var: Emission Demand Coef

(1) (2)

Time Trend -0.00114∗∗ -0.00121∗∗

[-4.718] [-4.670]

Investor FE ✓
AUM-Weighted ✓ ✓
Observations 113231 112942

This table summarizes the within-investor time trend of demand coefficients for
emissions intensity. Data is at the investor-quarter level, and each observation is
weighted by the investor’s AUM share in a quarter.

32



Table 5: Demand for Sustainability and Investor Characteristics

Dep Var: Demand Coefficient

(1) (2) (3)
Environment Score Emissions Intensity Green Patents

Price Inelasticity -0.0796∗∗ 0.155∗∗ 0.00875
[-6.268] [12.03] [0.732]

Log AUM 0.0521∗∗ -0.0109 -0.00745
[5.236] [-1.102] [-0.992]

Active Share 0.0223+ -0.0671∗∗ -0.0814∗∗
[1.891] [-5.174] [-7.298]

Turnover -0.0184+ 0.0389∗∗ 0.00395
[-1.909] [3.843] [0.406]

1{Non-USA} 0.122∗∗ -0.0581+ -0.126∗∗
[4.724] [-1.764] [-4.935]

1{Style=Value} 0.0321 0.0509 0.0231
[1.014] [1.607] [0.789]

1{Style=Growth} 0.0885∗∗ -0.165∗∗ 0.0112
[3.201] [-5.420] [0.418]

1{Hedge Fund} 0.0680+ 0.0981∗ -0.158∗∗
[1.984] [2.543] [-4.598]

1{Priv. Banking} 0.00648 -0.0333 -0.0104
[0.283] [-1.386] [-0.465]

1{Long Term} -0.0570 -0.00978 -0.0583+
[-1.407] [-0.210] [-1.864]

1{Broker/Dealer} 0.0514 0.242∗∗ 0.0246
[1.280] [4.470] [0.772]

Time FE ✓ ✓ ✓
Within R2 .013 .041 .013
Observations 113231 113231 113231

This table summarizes the relationship between demand for sustainability and investor
characteristics via cross-sectional regressions. The three sustainability characteristics—
environment score, emissions intensity, and green patents—are as described in Section 2.1.
Data is at the investor-quarter level., and all variables are cross-sectionally standardized.
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Table 6: Investor Pressure and Future Environmental Performance

Forward 1-Year Outcome

(1) (2) (3)
Environment Score Emissions Intensity Green Patents

Pressure: Environment Score 0.0187+ -0.000276 -0.0147∗

[2.006] [-0.0259] [-2.248]

Pressure: Emission Intensity -0.0279∗∗ 0.0251∗∗ 0.00184
[-3.097] [2.880] [0.319]

Pressure: Green Patents 0.00181 0.00322 0.00983+

[0.206] [0.342] [1.996]

Environment Score -0.228∗∗ -0.0617∗∗ -0.0103+

[-19.53] [-2.963] [-1.740]

Emission Intensity -0.0323∗ -0.0178 0.00130
[-2.648] [-1.225] [0.268]

Green Patents -0.00625 0.00685 0.769∗∗

[-0.706] [0.703] [37.07]

Time FE ✓ ✓ ✓
Non-Green Controls ✓ ✓ ✓
Within R2 .053 .007 .668
Observations 51065 51065 51065

This table summarizes the cross-sectional relationship between investor pressure and future environ-
mental performance. The dependent variables are: future one-year change in environment score, future
one-year change in emissions intensity, and the future one-year green patents. The main independent
variables are the investor pressure for three green characteristics. “Non-Green” control variables include
log book equity, investment, profitability, market beta, and dividend to book equity. All outcome vari-
ables and regressors are cross-sectionally standardized in each quarter.
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Table 7: Counterfactual Exercise: Impact of ESG-Agnostic Mandates

(a) Counterfactual Valuation Regressions: Full Sample (2013 - 2021)

Data CF: Shut off Green Demand

(1) (2) (3) (4)
Active Inst All Inst All Inst + HH

Environment Score 0.107∗∗ 0.0947∗∗ 0.0951∗∗ 0.0540∗∗
[8.191] [7.463] [7.194] [4.103]

Emissions Intensity -0.0156 0.0101 0.0330∗ 0.0387∗∗
[-1.153] [0.759] [2.634] [3.065]

Green Patents 0.00359 0.0309+ 0.0249 0.0161
[0.237] [1.942] [1.518] [0.993]

Time FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Observations 64184 64184 64184 64184

(b) Counterfactual Valuation Regressions: Subsample (2018 - 2021)

Data CF: Shut off Green Demand

(1) (2) (3) (4)
Active Inst All Inst All Inst + HH

Environment Score 0.115∗∗ 0.107∗∗ 0.114∗∗ 0.0698∗∗
[6.767] [6.305] [6.529] [4.010]

Emissions Intensity -0.0645∗∗ -0.0345∗ 0.00311 0.00803
[-4.261] [-2.266] [0.199] [0.506]

Green Patents -0.0115 0.0241 0.0150 0.00618
[-0.603] [1.262] [0.784] [0.327]

Time FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Observations 26251 26251 26251 26251

This table presents the results from valuation regressions in counterfactual scenarios where we “shut
off” green demand, i.e., set the demand coefficients for all three sustainability characteristics to zero
for one or more types of investors. Specifically, we consider three scenarios in which we “shut off” green
demand for all active institutions (column (2)), all institutions (column (3)), and all investors including the
household sector (column (4)). After obtaining counterfactual valuations, we re-estimate the valuation
regression as shown in Equation (1). We present results for both the full sample as well as the 2018-2021
subsample.
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Table 8: Counterfactual Exercise: Hypothetical ESG Ratings with Green Patents

Dep Var: Log M/B, Counterfactual − Actual

(1) (2) (3) (4)

1{Top 20% Green Innovator} 0.0470∗∗ 0.0692∗∗ 0.0684∗∗

[15.15] [18.79] [17.80]

1{Not Top Green Innovator} -0.0222∗∗

[-26.40]

Emissions Intensity 0.000495
[0.870]

Time FE ✓ ✓ ✓

Controls ✓ ✓

Observations 64184 64184 64184 64184

This table presents the results from the counterfactual exercise that explores the consequences
of adjusting the environmental score definition to reward companies with high green innova-
tion. Specifically, we increase the environmental score by 1.0 for the top 20% green innovators
as ranked by our green patent characteristic in each quarter. We then re-standardize the modi-
fied environmental score within each quarter. We keep the demand coefficients unchanged in
these counterfactual simulations. After obtaining the counterfactual valuations, we compute
the difference of log market-to-book ratios between the actual data and the counterfactual.
In columns (3-4), control variables include all non-green stock characteristics in the valuation
regressions plus the environmental score.
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Figure 1: Valuation Regressions: Time-Series of Coefficients

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

0.1

0.0

0.1

0.2

(a) Environment Score

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

0.1

0.0

0.1

0.2

(b) Emissions Intensity

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

0.1

0.0

0.1

0.2

(c) Green Patents

This figure plots the time-series of the coefficients obtained from the valuation re-
gression as shown in Equation (1). We first estimate Equation (1) cross-sectionally
for each quarter. The shaded area represents the 95% confidence interval around
the mean.
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Figure 2: Binned Scatterplots of Coefficients across Investors

(a) Price Elasticity vs. Demand for Sustainability
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(b) Demand across Sustainability
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This figure summarizes the relationship between pairs of demand coefficients across investors. In panel
(a), we plot the binscatter of coefficient on environment score against price inelasticity (left) as well as
the coefficient on emissions intensity on price inelasticity (right). In panel (b), we plot the coefficient on
environment score against the coefficient on emissions intensity.
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Figure 3: Trends in Average Coefficients
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This figure summarizes the time trends in the AUM-weighted average coefficient of investors.
We define “passive” institutional investors as large investment advisors, medium- or small-
passive investment advisors, and long-term investors; and we define “active” institutional
investors as medium- or small-active investment advisors, hedge funds, private banking, and
brokers.
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Figure 4: Demand Coefficient for Emission: Role of Within-Investor Preference Shift
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This figure plots the AUM-weighted average demand efficient on emissions intensity across
time both in the actual data and in the counterfactual where there is no within-investor shift
in preference. Specifically, let T0,i be the first quarter when investor i appears in our sample
and let βi,GHG,t be investor i’s demand coefficient for Log GHG1 intensity in quarter t. For
each quarter, we compute the average of demand coefficients in the data

(
β̄GHG,t

)
:

β̄GHG,t :=
∑i Ai,tβi,GHG,t

∑i Ai,t

as well as the average of the counterfactual coefficients if there is no shift in preferences(
β̄∗

GHG,t

)
:

β̄∗
GHG,t :=

∑i Ai,tβi,GHG,T0,i

∑i Ai,t

We then plot the time-series of both β̄GHG,t and β̄∗
GHG,t.
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Figure 5: Time Series of Average Investor Pressure across Stocks

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

0.15

0.10

0.05

0.00

0.05

0.10

0.15

In
st

itu
tio

na
l P

re
ss

ur
e

Environment Score Emissions Intensity Green Patents

This figure plots the average investor pressure across stocks for each quarter and each green
characteristic. We compute the investor pressure for sustainability for each stock using the
procedure described in Section 5.
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Figure 6: Counterfactual: Impact of ESG-Agnostic Mandates
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This figure plots the time-series of the quarterly valuation regression coefficients on
emissions intensity in the data and in the counterfactual where we shut off green de-
mand of select investors.
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ONLINE APPENDIX

A DATA

A.1 MSCI DATA

As discussed in Section 2.1, we define the raw environment score as:

gt (n) =
− (10 − Et (n))wE

t (n)
100

where Et (n) is the environmental pillar score provided by MSCI, and wE
t (n) is the environmental pil-

lar weight provided by MSCI. Et (n) measures a firm’s environmental performance relative to peers, and

wE
t (n) measures the importance of environmental issue for the firm. Et(n) ranges from 0 (worst) to 10 (best)

and represents the weighted average score across various dimensions related to environmental issues.

Figure A2 illustrates the distribution of Et(n), wE
t (n), and gt(n) for stocks in the Oil & Gas and Banking

industries. The distribution of MSCI environmental pillar score Et (n) is similar across the two industries,

which indicates that Et (n) is constructed based on peer-to-peer comparisons. However, the MSCI pillar

weights wE
t (n) for oil & gas stocks are significantly higher than those for banking stocks. Therefore, the

pillar weights are necessary for measuring the absolute (rather than peer-adjusted) level of companies’

environmental performance. Figure A2 confirms that our raw environmental score gt(n) is significantly

higher for banking stocks compared to oil & gas stocks.

A.2 PATENTSVIEW DATA

We obtain data of granted U.S. patents from the PatentsView database provided by the U.S. Patents and

Trademark Office.21 For each patent granted from 1975 to 2021, we have the name of patent assignee (the

company that applied for the patent) and two patent classification codes (Cooperative Patent Classification

and International Patent Classification codes—CPC and IPC).

We first match assignee names in the patent data to companies in CRSP. We start from the mappings

from individual patents to Compustat firm identifiers (GVKEY) provided by Autor et al. (2020) from 1975

to 2012 and by the WRDS US Patents database from 2011 to 2019. Based on these two mappings, we

construct a mapping from the PatentsView assignee names to Compustat GVKEY, and extrapolate these

mappings to patents from 2020 to 202122. Based on these mappings, we match 2,319,184 out of 3,642,855

patents from 2008 to 2021 to Compustat firms.

We then classify each patent as “green” or “non-green” based on a modified list of environment-related

CPC or IPC codes provided by Haščič and Migotto (2015)23. Compared with the original list of Haščič
21https://patentsview.org/download/data-download-tables
22Because the WRDS data covers fewer patents than the Autor et al. (2020) data between 2011 to 2012, we also extrapolate the

patent assignee to Compustat mapping from Autor et al. (2020) to patents from 2013 to 2019 that are not covered by the WRDS
data.

23Cohen et al. (2020) uses the exact list provided by Haščič and Migotto (2015) to define “green” patents.
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and Migotto (2015), we add three more CPC sub-classes related to climate change mitigation24. Among

the 2,319,184 patents matched to Compustat firms from 2008 to 2021, 210,716 (9.1%) are classified as green

based on our criteria.

A.3 PORTFOLIO HOLDINGS, ASSET PRICES, AND CHARACTERISTICS

The FactSet database provides an “Entity Sub-type” for each reporting institution. We first follow Koijen

et al. (2022) to classsify the type codes into five categories:

• Investment Advisors: IA, MF, IC

• Long-term Investors: FO, IN, PF, SV

• Hedge Funds: HF, FF, FH, FS

• Private Banking: PB, FY, CP, VC

• Brokers: BM, BR

Because “investment advisors” constitute 80% of total AUM of all institutional investors, we break down

this category further based on AUM and active share. We classify the largest 25 investment advisors (who

constitute 50% of total AUM of all investment advisors) as “large”. We then divide all other investment

advisors into 4 groups of equal total AUM (medium-passive, medium-active, small-passive, small-active)

based on AUM and active share.

We also aggregate all non-institutional holdings of stocks in our universe into a household sector. In

cases where total institutional holdings exceeds shares outstanding due to missing short positions or mis-

reporting, we scale back the holdings of each institution to ensure total institutional holdings equals shares

outstanding. The demand estimation procedure also requires the investment universe for each institution-

quarter. Following Koijen and Yogo (2019), we define the investment universe for each institution as all

stocks the institution has held in the previous three years.

The data on stock prices, dividends, returns, and shares outstanding are from the Center for Research

in Security Prices (CRSP) Monthly Stock Database. We restrict our sample to ordinary common shares (i.e.,

share codes 10, 11, 12) that trade on NYSE, AMEX, and Nasdaq (i.e., exchange codes 1, 2, and 3). We further

restrict our sample to stocks with non-missing price and shares outstanding. Accounting data are from the

Compustat North America Fundamentals Annual and Quarterly Databases.

To mitigate the impact of missing data and make sure our results are not driven by micro-caps, we only

use the largest stocks that collectively constitute 99% of total market cap in each quarter for analysis. There

are 64,184 stock-quarter observations from 2013Q1 to 2021Q3 in our sample, averaging to 1,834 stocks per

quarter.

24The CPC sub-classes added are: Y02D (climate change mitigation technologies in information and communication), Y02P
(climate change mitigation technologies in the production or processing of goods), and Y02W (climate change mitigation tech-
nologies related to wastewater treatment or waste management).
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B ADDITIONAL EMPIRICAL RESULTS

B.1 RELATIONSHIP AMONG MEASURES OF FIRM SUSTAINABILITY

Table A1 summarizes the relationship between our three measures of firm sustainability. In Panel (a), we

examine the relationship between green patents and other dimensions of sustainability based on cross-

sectional regressions. Column (1) of the panel shows that in the cross-section, firms with higher emissions

intensity and lower environmental score tend to have more green patents, after controlling for non-green

patents. In the cross-section, 1 standard deviation higher environmental score (emissions intensity) is as-

sociated with 0.08 standard deviation lower (0.04 standard deviation lower) green innovation. Column

(2) shows that the negative relationship between environmental score and green innovation is entirely

across-industry, while the positive relationship between emission and green innovation still holds within-

industry.

Panel (b) examines whether our three green characteristics could predict future change of emissions

intensity in the cross-section. In column (1) of the panel, we regress future 1-year change in emissions

intensity on all stock characteristics, controlling for year-quarter fixed effects. The regression show that

1 standard deviation higher environmental score is associated with 4.14% lower emissions intensity over

the next year, with t-statistic of 2.5 based on clustered standard errors. Columns (2) and (3) of the panel

also show that this predictive relationship is robust to adding industry fixed effects or using industry-

time fixed effects. These result show that the environmental score has real information content as it has

predictive power for future emissions reduction.25

B.2 ROBUSTNESS TO ALTERNATIVE ENVIRONMENTAL SCORES

In the paper, we construct environmental score as gt (n) =
−(10−Et(n))wE

t (n)
100 , where Et(n) is the MSCI en-

vironmental pillar score and wE
t (n) is the MSCI environmental pillar weight; we then residualize gt(n)

against emission intensity in each quarter to arrive at the environmental score we use for valuation regres-

sions and demand estimations. gt(n) will be high for stocks that have superior environmental performance

compared to their peers (high Et(n)), or for stocks in industries where environmental issues are not impor-

tant (low wE
t (n)).

In this appendix, we show that our results are robust to two alternative constructions for gt(n):

• Alternative Environment Score (1): g(1)t (n) = Et(n): use MSCI environmental pillar score directly

without adjusting for environmental pillar weights. g(1)t (n) will only be high for stocks with good

peer-adjusted environmental performance.

• Alternative Environment Score (2): g(2)t (n) = (E(n)−5)wE
t (n)

100 . In this construction, we use the envi-

ronmental pillar weight wE
t (n) (which ranges from 0 to 100) to scale the peer-adjusted environmental

25Igan et al. (2021) find that higher ESG scores do not predict larger decrease in carbon emissions. It should be noted that
the independent variable in their work is the firm-level ESG score from Refinitiv (Thomson Reuters), while it is the residualized
environment score in our case.
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performance Et(n)− 5 (which ranges from -5 to 5). g(2)t (n) will be high for stocks in environmentally-

important industries that have better environmental performance relative to its peers.

Importantly, compared to gt(n), neither the two alternative scores will be high for stocks in environmentally-

unimportant industries such as banking.

VALUATION REGRESSION Table A8 shows the valuation regression results based on the alternative scores

defined above. The alternative scores g(1)t (n) and g(2)t (n) are both residuzlied against log scope-1 emis-

sion intensity in each quarter to maintain consistency with our main specification in the paper. Table A8

first shows that both alternative scores are consistently positively priced in the cross-section of valuations.

Columns (2-3) also show that the MSCI environmental pillar score has a significantly higher valuation co-

efficient in the 2018-2021 subsample compared to the 2013-2017 subsample. Comparing Table A8 with the

valuation regression results in the main paper (Table 2), we find that the coefficients for emission intensity

and green patents are almost the same.

DEMAND COEFFICIENTS Figure A3 shows the AUM-weighted average demand coefficient for environ-

mental score by broad investor types under different environmental score definitions. The figure confirms

that there is consistently positive demand for stocks with high third-party environmental score throughout

our sample period.

Figure A4 shows the demand coefficients for emission intensity under different environmental score

definitions. The figure shows that the demand coefficients for emission intensity are not affected by how

we construct the environmental scores.

B.3 COUNTERFACTUAL: WITHIN-INVESTOR DEMAND SHIFT OR ACROSS-INVESTOR AUM SHIFT

In this counterfactual analysis, we undo the within-investor changes in demand for sustainability as well

as the changes in AUM to quantify the relative importance of within-investor demand shift versus across-

investor AUM shift. We find that the increasing valuation difference between low- and high-emission

stocks is almost entirely driven by within-investor demand shifts. This result highlights that the growth of

sustainable investing is primarily driven by institutional investors rebalancing their portfolios from high-

emission to low-emission stocks.

In the first counterfactual simulation, we shut off within-investor change of all three green demand

coefficients as in Section 4.2 by setting each investor’s green demand coefficients to their values in the first

quarter when the investor appears in our sample. In the second counterfactual simulation, we first shut

off within-investor demand change in the same way as above, and then further shut off AUM shift across

investors by reallocating AUM across investors based on their AUM in 2013Q1 (we set counterfactual AUM

to zero for investors not in our data in 2013Q1). We attribute the difference between actual data and the

first counterfactual simulation to within-investor shift of green demand, and we attribute the difference

between the first and second counterfactual simulation to the shift of AUM between green and brown

investors.
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Figure A5 plots the quarterly valuation regression coefficients for the emission characteristic, based on

the data or the two counterfactual simulations. In the data, the valuation gap per 1 standard deviation

higher emissions intensity is 4.65% in 2013Q1, which flips in sign to -3.60% in 2021Q3 and subsequently

reaches as low as -9.77% in 2020Q1 with t-statistic greater than 5. If we shut off within-investor demand

shift (the line labelled “Simulation 1” in the figure), this valuation gap is still a positive 2.83% in 2021Q3,

and is never statistically significantly negative in any quarter. Columns (1) and (2) of Table A9 further

supports this results based on a pooled valuation regression on the 2018-2021 data, showing that the val-

uation gap between low- and high-emission stocks mostly disappear if there had been no within-investor

demand change since 2013Q1. Moreover, the comparison between two counterfactual simulations show

that the shift of AUM across investors has little impact on the green-brown valuation gap.

In sum, these results reinforce our finding that the increasing valuation difference between low-emission

and high-emission stocks is almost entirely driven by a preference shift towards low-emission stocks within

institutional investors.

C THEORY

C.1 INCLUDING SUSTAINABILITY AS A CHARACTERISTIC

In this section, we show that sustainability enters the investor’s characteristic-based demand if either it is

informative about expected returns or investors face a minimum sustainability constraint.

If sustainability is informative about the expected returns, it immediately follows from the same line

of argument as in Koijen and Yogo (2019) that it should enter the characteristics-based demand. Suppose

on the other hand that sustainability is not informative about the expected returns, but investors face a

minimum sustainability constraint instead, similar to Pástor et al. (2021). More concretely, suppose for

some c > 0 investor i faces, on top of short-sale constraints, an extra constraint26

b′
itwit = (digt)

′wit > c (A1)

where bit is an N × 1 vector of non-pecuniary benefits which is a product of di, investor i’s ESG sensitivity,

and gt, the vector of firms’ sustainability. Let νit ≥ 0 be the Lagrange multiplier associated with this new

constraint. Also, let us denote the kth elementary vector by ek. Then we have the following result:

Proposition 2. If an investor faces a sustainability constraint, the optimal portfolio weight on asset n for which the
short-sale constraint is not binding is

wit(n) = yit(n)′Πit + πit,

26The current formulation implicitly assumes that green stocks counteract the effects of brown ones. This simplifies the ar-
gument, and we motivate it by referring to Morningstar’s ESG rating methodology which rates each fund using the weighted
average of the fund’s Sustainalytics scores. In order to incorporate negative screening against a group of stocks, the sensitivity di
can be changed to a vector di with a very large di(n) value if stock n is screened.
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where

Πit =
1

γit
(Φ̃it − Ψitκ̃it), πit =

1
γit

(ϕit − λit − ψitκ̃it)

are constant across assets. The modified factor loading is given by

Φ̃it = Φit + νitdiek,

the modified constant is given by

κ̃it =
Γ(1)′

it (µ̃
(1)
it − λit1)

Γ(1)′
it Γ(1)

it + γit

,

and µ̃it is the expected returns adjusted for the shadow benefits of sustainability

µ̃it = µit + νitbit.

Proposition 2 is identical to Proposition 1 in Koijen and Yogo (2019) but with a slight modification to the

constant terms to account for the shadow benefit of sustainability, νitbit. This addition comes from the fact

that green assets are valuable beyond their expected returns because they relax the sustainability constraint.

Even with the new constraint, the key content remains: variation in characteristics yit(n) is the only source

of variation in the portfolio weights. Furthermore, the expression for Φ̃it reveals that even if investors do

not believe sustainability is informative about expected returns (the factor loading on sustainability is zero

in Φit), the optimal portfolio weights will still be positively related to sustainability.

C.2 DERIVATION OF INVESTOR PRESSURE IN PROPOSITION 1

To compute M, recall the following identity that holds by market clearing:

p = log

(
∑

i
Aiwi

)
− s (A2)
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Differentiating both sides by p :

I =


(

1
∑i Aiwi(1)

) (
∂

∂p(1) ∑i Aiwi (1)
)

· · ·
(

1
∑i Aiwi(1)

) (
∂

∂p(n) ∑i Aiwi (1)
)

(
1

∑i Aiwi(n)

) (
∂

∂p(1) ∑i Aiwi (n)
)

· · ·
(

1
∑i Aiwi(n)

) (
∂

∂p(n) ∑i Aiwi (n)
)


=


1

∑i Aiwi(1)
0 0

0
. . . 0

0 0 1
∑i Aiwi(n)




∂(∑i Aiwi(1))
∂p(1) · · · ∂(∑i Aiwi(1))

∂p(n)
...

...
∂(∑i Aiwi(n))

∂p(1) · · · ∂(∑i Aiwi(n))
∂p(n)


≡ H−1 ∂

∂p

(
∑

i
Aiwi

)
(A3)

where

H := diag

(
∑

i
Aiwi

)
= ∑

i
Aidiag (wi) (A4)

Furthermore, it can be shown that:

∂wi(n)
∂p(n)

= β0iwi(n)(1 − wi(n)),
∂wi(n)
∂p(m)

= −β0iwi(n)wi(m)

wi (n) ≡
δi (n)

1 + ∑ℓ δi (ℓ)

which can be rewritten as
∂wi

∂p
= β0iGi, Gi = diag (wi)− wiw′

i

Through analogous steps, it can be shown that the derivative with respect to the kth characteristic is

∂wi

∂xk
= βiGi

Now going back to the market clearing condition (A2) and differentiating both sides by xk :

M :=
∂p
∂xk

= H−1

(
∑

i
β0i AiGi

)
M + H−1

(
∑

i
βki AiGi

)

Rearranging yields the desired expression:

M =

(
I − ∑

i
β0i AiH−1Gi

)−1(
∑

i
βki AiH−1Gi

)
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D COMPUTING COUNTERFACTUALS

We summarize the steps for computing counterfactual which closely follows the algorithm in Koijen and

Yogo (2019). For each quarter t, given AUM {Ai,t} and demand coefficients {βi,t} for all investors i, non-

price stock characteristics {xt(n), gt(n)} for all stocks n, and latent demand {ε i,t(n)}, we compute the

equilibrium log market capitalization m̃et(n) as follows:

1. Start from an initial guess m̃et(n; 0).

2. Plug m̃et(n; 0) and {βi,t, xt(n), gt(n), ε i,t(n)} into Equation 5 for quarter t to compute portfolio weights

wi,t(n).

3. Use the market-clearing condition to compute the prices corresponding to portfolio weights: m̃e∗t (n) =
log ∑i Ai,twi,t(n)− log BEt(n).

4. Update the guess for prices: m̃et(n; 1) = m̃et(n; 0) + kt(n) ·
[
m̃e∗t (n)− m̃et(n; 0)

]
.

(a) kt(n) is the stock- and time-specific speed of update. Koijen and Yogo (2019) uses the optimal

k∗t (n) =
[
1 − ∑i β0,i,t Ai,twi,t(n)[1−wi,t(n)]

∑i Ai,twi,t(n)

]−1
derived based on Newton’s Method.

(b) To improve numerical stability, we use a smaller update speed kt(n) = 0.25 · k∗t (n). If the proce-

dure fails to converge, we try kt(n) = 0.1 · k∗t (n) and kt(n) = 0.05 · k∗t (n).

(c) If the procedure still fails to converge, we then try fixed update speeds kt(n)= 0.8 / 0.5 / 0.2.

5. Iterate back to step (1) until the price vector converges: min |m̃et(n; 1)− m̃et(n; 0)| < 10−4.

For each set of primary inputs, we can compute the counterfactual portfolio holdings and investor pres-

sures after computing the prices.
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Table A1: Relationship Between Green Characteristics

(a) Green Patent and Other Green Characteristics

Dep Var: Green Patents

(1) (2)

Non-Green Patent / Asset 0.545∗∗ 0.476∗∗

[16.53] [14.49]

E-Score Residual -0.0782∗∗ -0.00300
[-5.653] [-0.200]

Log GHG1 Intensity 0.0439∗∗ 0.0444∗

[4.570] [2.282]

Time FE ✓ ✓
FF-48 Industry FE ✓
Within R2

Observations 64184 64184

(b) Green Characteristics and Future Change in Emissions Intensity

Dep Var: Future 4Q Change in Emissions Intensity

(1) (2) (3)

E-Score Residual -0.0414∗ -0.0386∗ -0.0436∗

[-2.511] [-2.603] [-2.670]

Log GHG1 Intensity -0.00867 -0.0686∗ -0.0268∗

[-1.667] [-2.503] [-2.173]

Green Patent / Asset 0.00239 0.00187 0.00289
[0.782] [0.537] [0.903]

Non-Green Controls ✓ ✓ ✓
Time FE ✓ ✓
FF-48 Industry FE ✓
FF-12 Industry × Time FE ✓
Within R2 .021 .032 .022
Observations 51065 51065 51065

This table summarizes the relationships between the different measures of sustainability. Panel (a)
examines the relationship between the measure of green innovation and other characteristics in the
cross-section. Panel (b) examines the predictability of each characteristic for future one-year ahead
change in emissions intensity in the cross-section.
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Table A2: Sustainable Demand and UNPRI Signatory Status: Cross-Sectional

E-Score Resid Emission Green Patent

(1) (2) (3) (4) (5) (6)

1{UNPRI Signatory} 0.0578∗ -0.0000795 -0.0252 -0.0225 -0.0275 -0.0108
[2.268] [-0.00309] [-0.801] [-0.749] [-1.058] [-0.414]

Time FE ✓ ✓ ✓ ✓ ✓ ✓
Investor Controls ✓ ✓ ✓
Within R2 0 .013 0 .041 0 .013
Observations 113231 113231 113231 113231 113231 113231

This table summarizes the relationship between green demand and investor characteristics via cross-
sectional regressions. Data is at the investor-quarter level, and all continuous variables are cross-
sectionally standardized. Controls include all investor charcteristics in Table 5.
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Table A3: Sustainable Demand and UNPRI Signatory Status: Time-Series

Demand Coefficients

(1) (2) (3)
E-Score Resid Emission Green Patent

1{UNPRI Signatory} -0.00135 -0.00916 -0.00391
[-0.123] [-0.945] [-0.244]

Time Trend -0.000883∗∗ -0.00144∗∗ -0.00157∗∗

[-3.052] [-4.682] [-4.286]

Investor FE ✓ ✓ ✓
Within R2 .001 .004 .002
Observations 112942 112942 112942

This table summarizes the within-investor change in demand for sustainability after an in-
vestor becomes a UNPRI signatory via time-series regressions.
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Table A4: Investor Pressure: Summary Statistics

Mean SD Q10 Median Q90

E-Score Residual 0.063 0.084 -0.033 0.056 0.162

Emission -0.084 0.085 -0.192 -0.071 0.004

Green Patent -0.008 0.092 -0.118 0.008 0.082

This table summarizes the investor pressure. Statistics are computed in each quarter,
and then averaged across quarters.
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Table A5: Investor Pressure and Future Environmental Performance: Longer Horizons

Forward 2-Year Outcome Forward 3-Year Outcome

(1) (2) (3) (4) (5) (6)
E-Score Resid GHG Green Patent E-Score Resid GHG Green Patent

Pressure: E-Score Residual 0.0236+ -0.0145 -0.0137+ 0.0131 -0.0453∗∗ -0.0155
[1.923] [-1.074] [-1.792] [0.929] [-3.245] [-1.689]

Pressure: GHG -0.0437∗∗ 0.0339∗∗ 0.00289 -0.0629∗∗ 0.0305∗ 0.00243
[-3.566] [2.788] [0.420] [-4.176] [2.164] [0.321]

Pressure: Green Patent -0.000842 0.0113 0.0152∗ 0.00769 0.0109 0.0200∗∗

[-0.0653] [1.064] [2.680] [0.490] [0.855] [2.983]

E-Score Residual -0.300∗∗ -0.123∗∗ -0.0138+ -0.349∗∗ -0.178∗∗ -0.0174+

[-20.03] [-4.839] [-1.916] [-19.25] [-6.342] [-2.007]

Log GHG1 Intensity -0.0414∗ -0.0429∗∗ 0.00233 -0.0438∗ -0.0530∗∗ 0.00291
[-2.620] [-2.816] [0.364] [-2.332] [-3.067] [0.380]

Green Patent / Asset 0.00293 0.00564 0.784∗∗ -0.000242 0.00360 0.781∗∗

[0.216] [0.469] [29.65] [-0.0144] [0.220] [24.48]

Time FE ✓ ✓ ✓ ✓ ✓ ✓
Non-Green Controls ✓ ✓ ✓ ✓ ✓ ✓
Within R2 .094 .029 .71 .134 .067 .722
Observations 41486 41486 40754 33182 33182 32099

This table summarizes the cross-sectional relationship between investor pressure and future environmen-
tal performance. The dependent variables are: future 2/3-year change in environmental score, future
2/3-year change in emissions intensity, and the future 2/3-year number of green patents divided by total
assets. The main independent variables are the investor pressure for three green characteristics. “Non-
Green” control variables include log book equity, investment, profitability, market beta, and dividend to
book equity. All outcome variables and regressors are cross-sectionally standardized in each quarter.
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Table A6: Counterfactual Exercise: Impact of ESG-Agnostic Mandates, Alternative Order

(a) Counterfactual Valuation Regressions: Full Sample (2013 - 2021)

Data CF: Shut off Green Demand

(1) (2) (3) (4)
Passive Inst All Inst All Inst + HH

E-Score Residual 0.107∗∗ 0.107∗∗ 0.0951∗∗ 0.0540∗∗
[8.191] [7.927] [7.194] [4.103]

Log GHG1 Intensity -0.0156 0.00697 0.0330∗ 0.0387∗∗
[-1.153] [0.552] [2.634] [3.065]

Green Patent / Asset 0.00359 -0.00211 0.0249 0.0161
[0.237] [-0.136] [1.518] [0.993]

Time FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Observations 64184 64184 64184 64184

(b) Counterfactual Valuation Regressions: Subsample (2018 - 2021)

Data CF: Shut off Green Demand

(1) (2) (3) (4)
Passive Inst All Inst All Inst + HH

E-Score Residual 0.115∗∗ 0.123∗∗ 0.114∗∗ 0.0698∗∗
[6.767] [7.005] [6.529] [4.010]

Log GHG1 Intensity -0.0645∗∗ -0.0275+ 0.00311 0.00803
[-4.261] [-1.789] [0.199] [0.506]

Green Patent / Asset -0.0115 -0.0209 0.0150 0.00618
[-0.603] [-1.107] [0.784] [0.327]

Time FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Observations 26251 26251 26251 26251

This table presents the results from valuation regressions in counterfactual scenarios where we “shut off” green
demand, i.e., set the demand coefficients for all three sustainability characteristics to zero for one or more types of
investors. Importantly, we shut off the demand for passive institutions before active institutions, which is in contrast
to the baseline procedure as described in Section 6.1. Specifically, we consider three scenarios in which we “shut off”
green demand for all passive institutions (column (2)), all institutions (column (3)), and all investors including the
household sector (column (4)). After obtaining counterfactual valuations, we re-estimate the valuation regression as
shown in Equation (1). We present results for both the full sample as well as the 2018-2021 subsample.
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Table A7: Stock Characteristics and Investment Universe Coverage

Investment Universe Coverage

(1) (2)
Equal-Weighted AUM-Weighted

E-Score Residual 0.00971∗∗ 0.00331
[6.164] [1.687]

Log GHG1 Intensity -0.000324 -0.00155
[-0.187] [-0.788]

Green Patent / Asset 0.000919 -0.000244
[0.522] [-0.136]

Log Book Equity 0.109∗∗ 0.0794∗∗
[38.18] [33.82]

Profit / Asset 0.0258∗∗ 0.0263∗∗
[16.28] [17.32]

Asset Growth 0.00556∗∗ 0.00499∗∗
[5.262] [5.440]

Dividend / Book Equity 0.0319∗∗ 0.0146∗∗
[12.99] [6.570]

CAPM Beta 0.00131 0.00212
[1.001] [1.204]

Non-Green Patent / Asset 0.0150∗∗ 0.0108∗∗
[8.604] [6.097]

Time FE ✓ ✓
Dep. Var. Mean .196 .679
Within R2 .659 .412
Observations 64184 64184

This table summarizes the results from regressing investment universe coverage on stock characteristics.
For column (1), the equal-weighted investment universe coverage for a stock is the fraction of investors by
number that have the stock in their investment universes. For column (2), the AUM-weighted investment
universe coverage for a stock is the fraction of investors by AUM that have the stock in their investment
universes.
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Table A8: Valuation Regression with Alternative Environment Scores

Dependent Variable: Log Market-to-Book

(1) (2) (3) (4) (5) (6)
Full Sample Full Sample 2013-2017 2013-2017 2018-2021 2018-2021

Alternative E-Score (1) 0.170∗∗ 0.141∗∗ 0.212∗∗
[11.94] [10.79] [11.43]

Alternative E-Score (2) 0.124∗∗ 0.114∗∗ 0.139∗∗
[9.308] [8.236] [7.452]

Emission Intensity -0.0133 0.0159 -0.0646∗∗ -0.0138 0.0152 -0.0641∗∗
[-1.005] [1.279] [-4.458] [-1.016] [1.202] [-4.303]

Green Patent -0.00608 0.0000154 -0.0156 -0.0113 -0.00230 -0.0262
[-0.420] [0.000947] [-0.851] [-0.782] [-0.142] [-1.428]

Year-Quarter FE ✓ ✓ ✓ ✓ ✓ ✓
Within R2 .411 .39 .452 .397 .382 .431
Observations 64184 37933 26251 64184 37933 26251

This table presents the valuation regression results based on two alternative measures of environmental
scores defined in Appendix B.2. Both non-sustainable and sustainable characteristics are included in the
regression, but the coefficients for sustainable characteristics are presented to save space.
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Table A9: Counterfactual Exercise: Demand vs. AUM Shifts

Data CF Simulations

(1) (2) (3)
Simulation 1 Simulation 2

Environment Score 0.115∗∗ 0.119∗∗ 0.118∗∗

[6.767] [6.725] [7.164]

Emissions Intensity -0.0645∗∗ -0.0124 0.00715
[-4.261] [-0.793] [0.476]

Green Patents -0.0115 0.0706∗∗ 0.0607∗∗

[-0.603] [3.584] [3.059]

Time FE ✓ ✓ ✓

Controls ✓ ✓ ✓

Observations 26251 26251 26251

This table presents the results from valuation regressions in counterfactual described in
Appendix B.3, which is designed to juxtapose the relative importance of demand shifts
within investors against the AUM shift across investors. In the first scenario, we shut off
the within-investor change of all green demand coefficients by setting each investor’s
green demand coefficients to their values in the investor’s first quarter. In the second
scenario, we first shut off the within-investor demand change in the same way as above
and then further shut off the AUM shift across investors by reallocating AUM across
investors based on their AUM in 2013Q1. After obtaining counterfactual valuations, we
re-estimate the valuation regression as shown in Equation (1).
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Figure A1: Average Price Inelasticity Over Time
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This figure summarizes the time trends in the AUM-weighted average price inelasticity coef-
ficient (β0,i,t) across all investors.
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Figure A2: Distribution of Environmental Scores for Oil & Gas and Banking Stocks
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(b) MSCI Environmental Pillar Weight: wE
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(c) Raw Environmental Score Following Pástor et al. (2022): gt(n)
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This figure illustrates the distribution of MSCI environmental pillar scores, MSCI environ-
mental pillar weights, and the raw environmental scores across stock-quarters from oil &
gas and banking industries. We use the 48-industry classifications from Ken French’s web-
site to select observations for each industry.
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Figure A3: Demand Coefficients for Environmental Score: Alternative Environment Score Construc-
tions
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This figure plots the average demand coefficient for environmental score by broad investor
types (passive institutions, active institutions, and the household sector) based on different
definitions of environmental score. The alternative scores are defined in Appendix B.2. The
investor classifications are the same as in the main paper.

62



Figure A4: Demand Coefficients for Emission Intensity: Alternative Environment Score Constructions
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This figure plots the average demand coefficient for emission intensity by broad investor
types (passive institutions, active institutions, and the household sector) based on different
definitions of environmental score. The alternative scores are defined in Appendix B.2. The
investor classifications are the same as in the main paper.
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Figure A5: Counterfactual: Demand vs. AUM Shifts
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This figure plots the time-series of the quarterly valuation regression coefficients on emissions
intensity in the data in the counterfactual described in Appendix B.3, which is designed to
juxtapose the relative importance of demand shifts within investors against the AUM shift
across investors..
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